|
Optimization of Epsilon-Greedy Exploration
Ethan Che, Hakan Ceylan, James McInerney, and Nathan Kallus
Selected for presentation at MIT Conference on Digital Experimentation (CODE), 2024
arXiv:2506.03324 [cs.LG], 2025
arXiv
|
|
How Well do LLMs Compress Their Own Chain-of-Thought?
A Token Complexity Approach
Ayeong Lee*, Ethan Che*, and Tianyi Peng
arXiv:2503.01141 [cs.CL], 2025
arXiv
|
|
Differentiable Discrete Event Simulation for Queuing Network Control
Ethan Che, Jing Dong, and Hongseok Namkoong
arXiv:2409.03740 [cs.LG], 2024
Preliminary version in ICML 2023 Differentiable Almost Everything Workshop
arXiv
workshop
|
|
Mathematical Programming for Adaptive Experiments
Ethan Che, Daniel R. Jiang, Hongseok Namkoong, Jimmy Wang
arXiv:2408.04570 [cs.LG], 2024
Preliminary version in ESIF Economics and AI+ML Meeting 2024 (33% acceptance rate)
Selected for presentation at MIT Conference on Digital Experimentation (CODE), 2024
arXiv
workshop
|
|
Adaptive Experimentation at Scale: A Computational Framework for Flexible Batches
Ethan Che and Hongseok Namkoong
arXiv:2303.11582 [cs.LG], 2023
Major Revision at Operations Research.
arXiv
|
|
Stochastic Gradient Descent with Adaptive Data
Ethan Che, Jing Dong, and Xin T. Tong
arXiv:2410.01195 [cs.LG], 2024
Major Revision at Operations Research.
arXiv
|
|
AExGym: Benchmarks and Environments for Adaptive Experimentation
Jimmy Wang, Ethan Che, Daniel R. Jiang, and Hongseok Namkoong
arXiv:2408.04531 [cs.LG], 2024
arXiv
|