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Abstract

Discounting can be viewed as a perturbation to improve the ergodicity of the Markov chain by
imposing more regular regenerations. It can improve the estimation efficiency in Markov chain estima-
tion tasks. On the other hand, the perturbation can also lead to estimation bias, which imposes an
efficiency-accuracy tradeoff. In this paper, we apply the Wasserstein ergodicity framework to investigate
the efficiency-accuracy tradeoff for discounting in two important estimation tasks: steady-state estima-
tion and estimating the solution to the Poisson equation. Our results quantifies the overall benefit of
discounting and provide guidance on choosing the appropriate discount factors in these estimation tasks.

1 Introduction

Consider a discrete-time Markov chain with transition kernel P and a properly defined stationary measure
π. For some measurable function f , we consider the following estimation tasks:
1. Estimating the steady-state performance metric πf .
2. Estimating the relative value function h(x), i.e. a solution to the Poisson equation

(P − I)h = −f + πf (1)

These estimation tasks arise in many applications such as Markov chain Monte Carlo (MCMC) in Bayesian
statistics [Smith and Roberts, 1993], performance evaluation in queueing models [Asmussen and Glynn,
2007], and policy evaluation in reinforcement learning with long-run average cost criteria [Meyn, 1997].

In most practical settings, we cannot compute these quantities explicitly or draw samples from π directly.
Instead, we can simulate the Markov chain following the transition kernel P and use sampling based esti-
mators. An important consideration when using such estimators is the ergodicity of the Markov chain. If
the Markov chain converges to stationarity very slowly, the corresponding estimator can have a very large
variance and poor estimation efficiency.

To illustrate, consider the sample average estimate of the steady-state mean πf . Under proper ergod-
icity conditions, the sample average satisfies a central limit theorem (CLT) with an asymptotic variance
σ2(f),which takes the form (Propositon 4.2.2 in Asmussen and Glynn [2007])

σ2(f) = varπ(f(X0)) + 2

∞∑
k=1

covπ(f(X0), f(Xk)) (2)

Note that the asymptotic variance is determined not only by the variance of f under the stationary measure,
i.e., varπ(f(X0)), but also by the sum of autocovariances, i.e.,

∑∞
k=1 covπ(f(X0), f(Xk)). If correlations

decay very slowly, the latter term can be exceedingly large.

Next, consider the relative value function in Markov decision processes (MDP), which can be obtained
as a solution to the Poisson equation (1). Under suitable ergodicity conditions, the Poisson equation admits
a solution of the form (Proposition A.3.1 in Meyn [2011])

hx
∗
(x) = E

[
τ−1∑
t=0

(f(Xt)− πf)
∣∣∣X0 = x

]
,
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where τ is the first hitting time of a regeneration state x∗, When using simulation to estimate hx
∗
, if the

Markov chain mixes slowly, the trajectories of the Markov chain can exhibit large fluctuations, in which
case the corresponding sums can vary across different magnitude over different sample paths. In many
applications, the large number of samples required to control the variance of these estimators is the main
computational bottleneck.

When the Markov chain lacks sufficient ergodicity, a potential modification is to apply discounting. The
idea of discounting has been widely used in the MDP literature [Kakade, 2003]. In many applications,
the discounted cost is a natural objective. However, there are also numerous examples where discounting
is imposed mainly for analytical and computational tractability. We consider a “discounted” chain with
transition kernel

Pγ,ν(x, ·) = γP (x, ·) + (1− γ)ν(·) (3)

where γ ∈ (0, 1) is the discount factor and ν is the initial distribution.

According to the transition kernel Pγ,ν , at each step, with probability γ, the modified chain follows the
transition kernel of the original chain, P ; with probability (1− γ), the chain regenerates and draws a sample
from the initial distribution ν. Intuitively, the random regeneration “breaks” the autocorrelation. This
can ensure faster convergence to stationarity in steady-state estimation and more regular trajectories when
estimating the Poisson equation solution. However, the stationary measure and the Poisson solutions asso-
ciated with discounted chain may be different from the original Markov chain, which introduces estimation
bias. The different effects of discounting on variance and bias pose an interesting tradeoff between efficiency
and accuracy. In this paper, we study this efficiency-accuracy tradeoff in Markov chain estimation from a
statistical perspective.

We apply the Wasserstein ergodicity framework, which allows us to quantify the estimation bias and
variance. Based on these quantifications, we further characterize the overall benefit of discounting and
how to choose the appropriate discount factor to balance the efficiency-accuracy tradeoff. In particular,
we characterize how the optimal discount factor scales with the sampling budget and the ergodicity of the
Markov chain.

1.1 Related literature

Using the discounted cost as an approximation for the long-run average cost has a long history in the MDP
literature. It is well known that for a given stationary policy, the normalized discounted cost and the
long-run average cost are equivalent in the limit as the discount factor γ approaches 1 [Blackwell, 1962].
Note that the expected normalized cumulative discounted cost can be viewed as the long-run average cost
of a modified Markov chain as defined in (3) [Kakade, 2003]. Many papers use discounting to improve
the efficiency of simulation-based algorithms in policy evaluation related tasks (see, for example, Jaakkola
et al. [1994], Baxter and Bartlett [2001], Marbach and Tsitsiklis [2001]). In those settings, to balance the
bias-variance tradeoff, it is argued that the choice of γ should depend on the mixing time of the underlying
Markov process. Our analysis confirms this insight and provides further statistical justifications for it. The
most relevant papers to ours are those that establish upper bounds for bias or variance of the discounted
estimators [Jaakkola et al., 1994, Petrik and Scherrer, 2008, Jiang et al., 2016, Dai and Gluzman, 2021]. We
extend existing results by developing new upper bounds for both the bias and the variance, which allows us
to better quantify the tradeoff and provide guidance on the choice of the discount factor.

There are some works that quantify the optimality gap of algorithms learned under the discounted cost
criteria [Kakade, 2001, Thomas, 2014]. There are also works on Blackwell optimality, which seek to obtain
policies that are optimal for all discount factors γ above some cutoff γ∗ [Schneckenreither, 2020, Perotto and
Vercouter, 2018]. The results are very relevant for MDPs but is beyond the scope of this paper.

Analyzing the convergence rate and approximation accuracy are fundamental problems in MCMC [Roberts
and Tweedie, 1996, Hairer et al., 2014]. There are many works that study how perturbation due to numer-
ical errors affect the convergence rate and approximation accuracy of MCMC algorithms (see, for example,
Hervé and Ledoux [2014], Dwivedi et al. [2019], Rudolf and Schweizer [2018]). These works often use the
ergodicity framework to quantify the convergence. We apply a similar ergodicity framework, which allows
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us to develop finite-sample performance bounds [Joulin and Ollivier, 2010]. Recently, Wang et al. [2021]
propose a regeneration-enriched Markov chain for steady-state estimation. There, the original Markov chain
dynamics are augmented with random regenerations occurring according to a time-inhomogeneous Poisson
process with a state-dependent rate and the rate function is carefully calibrated to maintain the same sta-
tionary measure. These calibrations require knowledge of the stationary distribution up to a normalizing
constant. The discounting scheme considered in this paper uses a fixed regeneration rate. The choice of a
good discount rate in this case requires much less knowledge of the target stationary measure.

Lastly, our work is related to the rich literature on steady-state simulation (see Ni and Henderson [2015]
and Chapter IV in Asmussen and Glynn [2007] for a comprehensive review). Using regeneration for steady-
state estimation is one of the key strategies in simulation output analysis [Glynn and Iglehart, 1993]. To
improve the estimation efficiency, various variance reduction techniques has been proposed in the literature,
including control variates [Yang and Nelson, 1992], approximating martingales [Henderson and Glynn, 2002],
importance sampling [Blanchet and Lam, 2012], etc. Discounting can also be viewed as a variance reduction
technique, but it introduces substantial extra bias. To the best of our knowledge, how to strike a balance
between the variance and the bias in this case has not been well studied in the literature and is one of the
main contributions of this paper.

1.2 Notations

The following notations are used throughout the paper. Let X denote a Polish space and B(X ) denote the
corresponding Borel σ-algebra. Let P denote the set of all Borel probability measures on (X ,B(X )). For
µ ∈ P and a measurable function f : X → R, define µf = Eµ[f(X)] =

∫
X f(x)µ(dx). If µf2 < ∞, we also

define varµf = varµ(f(X)) =
∫
X (f(x)− µf)2µ(dx).

Let P be a transition kernel on (X ,B(X )). In particular, P : P → P, is defined as

µP (A) =

∫
X
P (x,A)µ(dx), for any µ ∈ P and A ∈ B(X ).

Let δx denote a delta measure on x. Then, δxP (A) = P (x,A). For a measurable function f , Pf(x) =∫
X f(y)P (x, dy). We write (Xn)n∈Z as the Markov chain with transition kernel P . If P has a unique

stationary distribution, we denote it as π. Denote

Eµ[f(Xk)] = µP kf and varµ(f(Xk)) =

∫
X

(f(x)− µP kf)2µP k(dx)

For simplicity, we also denote Ex[f(Xk)] = E[f(Xk)|X0 = x] = P kf(x) and varx(f(Xk)) = var(f(Xk)|X0 =
x). We distinguish between two important variances: the steady-state variance varπf and the asymptotic
variance σ(f) (see (2)). Note that under suitable regularity conditions,

√
n

(
1

n

n∑
i=1

f(Xi)− πf

)
⇒ N(0, σ2(f)) as n→∞.

Let Pγ,ν (see (3)) and πγ,ν denote the transition kernel and stationary measure of the discounted modi-
fication of (Xn)n∈Z, which is also referred to as the discounted chain and we write it as (Xγ,ν

n )n∈Z . To keep
the notations more concise, we sometimes suppress the dependence on the initial distribution ν when it is
clear from the context.

Lastly, given two sequences of nonnegative real numbers {an}n≥1 and {bn}n≥1, we define bn = O(an) and
bn = Ω(an) if there exist some constants C,C ′ > 0 such that bn ≤ Can and C ′an ≤ bn ≤ Can respectively.
We define bn = o(an) and bn ∼ an if limn→∞ bn/an → 0 and limn→∞ bn/an = C for some C ∈ (0,∞)
respectively.

3



2 Preliminaries

In this section, we introduce some basic properties of the discounted chain and our analysis framework –
Wasserstein ergodicity.

2.1 Properties of the discounted Markov chain

A key property of the discounted chain is that it is a regenerative process. Regenerations occur when the
state is drawn from ν instead of following the transition kernel P . In this case, the excursion length follows
a Geometric distribution with success probability 1 − γ. Due to the regeneration structure, the discounted
chain is uniformly ergodic, even if the original Markov chain is not.

Proposition 1. For an irreducible Markov chain with transition kernel P , the discounted chain with tran-
sition kernel Pγ,ν is uniformly ergodic. That is, there exists ρ ∈ (0, 1) and C > 0 such that

sup
x∈X
‖δxPnγ,ν , πγ‖tv ≤ Cρn

where || · ||tv is total variation distance.

This is a strong regularity property, which guarantees that the sample average of the discounted chain
satisfies a law of large numbers, a CLT, and a concentration inequality for bounded functions (see Appendix
B.1). Although the discounted chain has this appealing property, if the original Markov chain does not have
a well-defined stationary distribution or does not satisfy a CLT, then it is unclear how to make a proper
comparison between the two. Thus, in what follows, we assume that the original Markov chain is suitably
ergodic as quantified in the next subsection.

2.2 Wasserstein ergodicity

In order to quantify the magnitude of the costs and benefits of estimators based on the discounted chain, we
consider a class of Markov chains that satisfy Wasserstein ergodicity.

Let d be a metric which is assumed to be lower semi-continuous with respect to the product topology of
X . For a measurable function f : X → R, let ‖f‖Lip = supx,y∈X ,x 6=y |f(x)−f(y)|/d(x, y) denote its Lipschitz
constant with respect to d. We also denote Lip(X , d) as the set of 1-Lipschitz functions on (X , d). For any
µ, ν ∈ P, the Wasserstein-1 distance is defined as

W (µ, ν) := inf
M∈C(µ,ν)

∫
X×X

d(x, y)M(dx, dy) = sup
f∈Lip(X ,d)

|µf − νf |

where C(µ, ν) is the set of all couplings of µ and ν, i.e., all probability measures with marginals ν and
µ. We restrict our analysis to Markov chains that satisfy the Wasserstein ergodicity condition as defined in
Assumption 1. This notion of ergodicity is used in [Rudolf and Schweizer, 2018] and is similar to Wasserstein
contraction used in [Joulin and Ollivier, 2010].

Assumption 1 (Wasserstein ergodicity). A Markov chain with transition kernel P satisfies the Wasserstein
ergodicity condition if there exist constants C ∈ [1,∞) and κ ∈ [0, 1), such that

sup
x6=y

W (δxP
n, δyP

n)

d(x, y)
< Cκn for all n ∈ N.

As we will show in Proposition 2, for a transition kernel P with stationary distribution π, if it satisfies
Assumption 1, then for any µ ∈ P, W (µPn, π) ≤ CκnW (µ, π). Thus, κ measures how fast the Markov chain
converges to stationarity. Smaller κ implies faster convergence. In what follows, we shall refer to κ as the
ergodicity constant of the Markov chain.
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Wasserstein ergodicity is closely related to other definitions of ergodicity. When d(x, y) = 2 × 1x6=y,
where 1 denote an indicator function, W (µ, ν) = ‖µ − ν‖tv and Wasserstein ergodicity coincides with
uniform ergodicity. More generally, when d(x, y) = (V (x) + V (y))1x 6=y for a measurable function V : X →
[1,∞], Wasserstein ergodicity coincides with V -uniform ergodicity. In particular, Lemma 3.1 in [Rudolf and
Schweizer, 2018] shows that

||µ− ν||V ≡ sup
|f |≤V

∣∣∣∣∫
X
f(y)(µ(dy)− ν(dy))

∣∣∣∣ = W (µ, ν)

Furthermore, if P is φ-irreducible and aperiodic, then geometric ergodicity is equivalent to V -uniform er-
godicity [Roberts and Rosenthal, 1997]. This implies that geometrically ergodic chain is almost equivalent
to Wasserstein ergodic with a proper defined metric.

Another framework to characterize the convergence rate to stationarity is the spectral gap. The spectral
gap measures the convergence rate of µPn to π in χ2-distance. For reversible Markov chains, under suitable
regularity conditions, exponential ergodicity leads to the existence of a spectral gap (see, e.g., Proposition
2.8 in Hairer et al. [2014]). On the other hand, convergence under the χ2-distance often leads to convergence
under the total variation distance.

The next proposition summarizes basic properties of Markov chains under Wasserstein ergodicity. Define

Vπ := sup
f∈Lip(X ,d)

varπf and VP (x) := sup
f∈Lip(X ,d)

varδxP f for x ∈ X .

Proposition 2. For a transition kernel P with stationary distribution π, if Assumption 1 holds, P satisfies
the following properties.

(1) For any measurable and Lipchitz continuous function f ,

|Pnf(x)− Pnf(y)| ≤ C‖f‖Lipκnd(x, y),

i.e., Pnf(x) is C‖f‖Lipκn-Lipschitz.

(2) For any measures µ, ν, W (µPn, νPn) ≤ CκnW (µ, ν). This implies that W1(µPn, π) ≤ CκnW (µ, π).

(3) For any measurable and Lipchitz continuous function f with πf2 < ∞, the steady-state variance
satisfies

varπf ≤ C2‖f‖2Lip
1

1− κ2
πVP .

The asymptotic variance satisfies

σ2(f) ≤ C‖f‖2Lip
1

1− κ
Vπ ≤ C3‖f‖2Lip

(
1

1− κ

)(
1

1− κ2

)
πVP .

Item (3) in Proposition 2 quantifies how the ergodicity constant affect both the steady-state variance and
the asymptotic variance. Even though the Wasserstein ergodicity constant κ will affect the value of πVP , it
is in general bounded, i.e., it does not blow up as κ approaches 1. Thus,

varπ(f) = O

(
1

1− κ

)
and σ2(f) = O

(
1

(1− κ)2

)
.

These bounds are often sharp as we demonstrate through the following three examples.

Example 2.1. Consider the linear autoregressive process of order one, AR(1),

Xn+1 = φXn + εn+1

where φ ∈ (0, 1) and εn’s are independent N(0, σ2). The stationary distribution of the Markov chain is
N(0, σ2/(1 − φ2)). Under the metric d(x, y) = (V (x) + V (y)) 1x6=y with V (x) = (1 − φ2)x2 + 1, the chain
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satisfies Assumption 1 with κ = φ2. Note that κ approaches 1 as φ approaches 1. Moreover, π(VP ) ≤ 21σ4+2.
For f(x) = x, we have [Spitzner and Boucher, 2007]

varπ(f) =
σ2

1− φ2
∼ 1

1− κ
and σ2(f) =

σ2

1− φ2
1 + φ

1− φ
∼ 1

(1− κ)2
.

Example 2.2. Consider a discretized M/M/1 queue with transition probability

P (x, x+ 1) = λ and P (x, (x− 1)+) = µ, x = 0, 1, . . . ,

where λ, µ > 0 with λ + µ = 1. Let ρ = λ/µ. The stationary distribution of the Markov chain is

Geometric(1 − ρ). Under the metric d(x, y) =
∣∣∣∑x

k=1 (µ/λ)
k/3 −

∑y
k=1 (µ/λ)

k/3
∣∣∣ with

∑0
k=1 (µ/λ)

k/3 ≡ 1,

the chain satisfies Assumption 1 with κ = µ(ρ2/3 + ρ1/3) [Joulin, 2009]. Note that κ approaches 1 as ρ
approaches 1. Moreover, πVP ≤ 3. For f(x) = x, we have

varπ(f) =
ρ

(1− ρ)2
∼ 1

1− κ
and σ2(f) =

2ρ(1 + ρ)

(1− ρ)4
∼ 1

(1− κ)2
.

Example 2.3. Consider a Binomial Markov chain with N ∈ N and λ = aN for some fixed a ∈ (0, 1). Then,
the transition probability takes the form

P (x, x+ 1) =
λ

N

(
1− x

N

)
, x = 0, ..., N − 1, P (x, x− 1) =

(
1− λ

N

)( x
N

)
, x = 1, ..., N

P (x, x) =

(
λ

N

)( x
N

)
+

(
1− λ

N

)(
1− x

N

)
, x = 0, ..., N

The stationary distribution of the Markov chain is Binomial(N,λ/N). Under the Euclidean metric, the
chain satisfies Assumption 1 with κ = 1− 1/N [Joulin and Ollivier, 2010]. Note that κ approaches 1 as N
approaches ∞. Moreover, πVP ≤ 4λ/N = 4a. For f(x) = x, we have

varπ(f) = Na(1− a) ∼ 1

1− κ
and σ2(f) = N(2N − 1)a(1− a) ∼ 1

(1− κ)2
.

3 Steady-state estimation

In this section, we study the effect of discounting on the efficiency and accuracy in steady-state estimation.

3.1 Bias and Variance quantification

Our first result quantifies the effect of discounting on the ergodicity constant.

Lemma 1. Under Assumption 1, for any n ∈ N and x, y ∈ X , x 6= y,

W (δxP
n
γ , δyP

n
γ ) = γnW (δxP

n, δyP
n) ≤ C(γκ)nd(x, y).

Lemma 1 indicates that if P has an ergodicity constant of κ, the discounted chain Pγ will have an
improved ergodicity constant of γκ. We next study the implications the improved ergodicity on the bias and
variance of the discounted estimator. Let σ2

γ(f) denote the asymptotic variance of the discounted chain. We
also define

D(µ, ν) := sup
f∈Lip(X ,d)

(µf − νf)2.

Theorem 1. Suppose Assumption 1 holds and f is Lipschitz continuous. Assume W (ν, π), Vν < ∞, and
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for any γ ∈ [0, 1], πγVP , πγD(δxP, ν) <∞. For the discounted chain, the bias satisfies

|πf − πγf | ≤ C‖f‖Lip
1− γ

1− γκ
W (ν, π).

The asymptotic variance satisfies

σ2
γ(f) ≤ C‖f‖2Lip

(
1

1− γκ

)
Vπγ

≤ C3||f ||2Lip
1

(1− γκ)2(1 + γκ)
(γπγVP + (1− γ)Vν + γ(1− γ)πγD(δxP, ν)) .

We make several observations from Theorem 1. First, as a sanity check, in the extreme case where ν = π
and γ = 1, we obtain |πf−πγf | = 0 and σ2

γ(f) = varπ(f) ≤ C‖f‖2LipVπ, which satisfy the bounds in Theorem
1. Second, consider a fixed distribution ν with W (ν, π) > 0 and Vν < ∞. As demonstrated in Examples
2.1 – 2.3, πγVP and πγD(δxP, ν) are likely to be bounded, i.e., they do not blow up as κ approaches 1 or γ
approaches 1. Then, we have

|πf − πγf | = O

(
1− γ

1− γκ

)
, σ2

γ(f) = O

(
1

(1− γκ)2

)
.

Note that to achieve a small bias, we want γ to be large. On the other hand, to achieve a small variance, we
want γ to be small. Third, for a fixed value of γ ∈ (0, 1), to achieve a small bias, we want to choose ν close
to π, i.e., W (ν, π) is small. For the variance, the terms Vν and πγD(δxP, ν) suggest that a good choice of ν
should be 1) highly concentrated, with tails that decay at least as fast as as π, and 2) not too far from the
stationary distribution π.

3.2 Efficiency and accuracy tradeoff in steady-state estimation

In this subsection, we study the efficiency-accuracy tradeoff using the bounds characterized in Theorem 1.
We assume ν is fixed with W (ν, π), Vν , πγVP , and πγD(δxP, ν) bounded. Define

M(ν, P ) = sup
γ∈[0,1]

{γπγVP + (1− γ)Vν + γ(1− γ)πγD(δxP, ν)} . (4)

When using the sample average f̄n = 1
n

∑n−1
t=0 f(Xγ

t ) to approximate πf , we want to find γ that minimizes
the MSE of f̄n. Let MSE(γ) denote the the MSE when applying the discount factor γ and the chain is
initialized from stationarity (i.e., we ignore the transient bias, which is in general of a smaller order). Then
MSE(γ) = |πγf − πf |2 + σ2

γ(f)/n. Since the bias and the asymptotic variance are not known explicitly, we
approximate them using the upper bounds developed in Theorem 1. In particular, we consider the following
approximated MSE:

M̂SE(γ) :=

(
1− γ

1− γκ
W (ν, π)

)2

+
1

n(1− γκ)2
M(ν, P ).

The optimal solution of minγ M̂SE(γ) takes the form γ∗ = 1− n−1M(ν, P )(1− κ)−1W (ν, π)−2. In practice,
M(ν, P )/(1−κ) and W (ν, π) can be hard to calculate. Using the fact that M(ν, P )/(1−κ) ≥ πVP /(1−κ) =
varπ(f) and W (ν, π) ≥ |πf − νf |, we obtain the following heuristic

γ̂∗ = 1− c

n

varπ(f)

|πf − νf |2
,

where c is a constant independent of n and P . In our numerical experiments, setting c = 4 leads to good
performance (see Appendix A.1.2).

We make several important observations. First, γ̂∗ converges to 1 as the sample size n increases to
infinity. This is expected since as the sample size increases, the variance of the estimator decreases while
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the intrinsic bias from discounting stays the same. Second, (1− γ̂∗)−1 ∼ n. This indicates that the number
of regenerations remains of constant order as the sample size increases. Moreover, varπ(f)/|πf − νf |2 is of
a constant order as κ → 1, so the ergodicity of the chain has a small effect on the optimal discount factor
as n grows large (see, for example, a case study for the M/M/1 queue in Appendix C, where the stationary
measure and asymptotic variance of the discounted estimator are known explicitly). Lastly, discounting does

not improve how the MSE scales with n and κ. In particular, based on M̂SE(γ∗), we have

min
γ

MSE(γ) = O
(
n−1(1− κ)−2

)
.

This indicates that discounting with a properly chosen γ can only improve the efficiency of the estimator by
a constant factor, not by order of magnitude. Our numerical experiments in Appendix A.1.2 confirms this
observation.

4 Poisson equation estimation

In this section, we study another important estimation problem – the solution to the Poisson equation. This
problem arises in MDPs with long-run average reward.

For a Markov chain with transition kernel P , stationary distribution π, and cost function f , the Poisson
equation is defined as

(P − I)h = −f + πf. (5)

A function h : X → R that satisfies (5) is referred to as a solution to the Poisson equation. Under suitable
ergodicity conditions, the solution exist and is unique up to a constant shift. A solution is called fundamental
if πh = 0. If the Markov chain is V -uniformly ergodic, then for any cost function f with |f | ≤ V , the Poisson
equation (5) admits a fundamental solution of the form (Proposition A.3.11 in Meyn [2011])

h̄(x) = Ex

[ ∞∑
k=0

(f(Xk)− πf)

]
.

We also introduce a solution based on the regeneration idea, which is widely used when applying Monte
Carlo simulation to estimate the solution [Dai and Gluzman, 2021]. Fix x∗ ∈ X and define τ = min{t ≥ 1 :
Xt = x∗}. Suppose Ex∗ [τ ] <∞, i.e., x∗ is a regeneration state. Then, we have the solution:

hx
∗
(x) = Ex

[
τ−1∑
t=0

(f(Xt)− πf)

]
.

Note that hx
∗
(x∗) = 0. When using simulation to estimate hx

∗
(x), we can generate independent and

identically distributed (iid) copies of Hx(i) =
∑τ−1
t=0 (f(Xt) − πf) given X0 = x 1. Let n denote the total

number of steps we generate the Markov chain and N(n) denote the number of Hx(i)’s generated in n steps.
Then, we have [Glynn and Whitt, 1992]

√
N(n)

N(n)∑
i=1

Hx(i)− hx∗(x)

⇒ N

(
0,Ex[τ ]varx

(
τ−1∑
t=0

(f(Xt)− πf)

))
as n→∞.

We refer to

η(f)(x) := Ex[τ ]varx

(
τ−1∑
t=0

(f(Xt)− πf)

)
as the asymptotic variance of the estimator. A key challenge in implementation is that it can take a long
time for the Markov chain to regenerate, which can lead to a large value of η(f)(x).

1In practice, we may not know πf . Thus, we need to plug in a properly constructed estimate of πf .
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We next introduce two Poisson equation solutions based on the discounted chain. First, the discounted
chain Pγ,ν , regenerates every time we draw samples from ν. Thus, we can consider:

hγ(x) = Ex

[
τγ−1∑
t=0

(f(Xt)− πf)

]
,

where τγ ∼ Geometric(1 − γ) and is independent of the Markov chain {Xt}t≥0. Note that we drop the
dependence on ν as it has no effect on hγ(x).

Second, we consider using the geometric regeneration time to augment the existing regenerative structure
of P . This gives rise to the approximated solution:

hx
∗

γ (x) = Ex

[
τ∧τγ−1∑
t=0

(f(Xt)− πγ,δx∗ f)

]
.

Lemma 2. Consider the Poisson equation for the discounted chain Pγ,ν with stationary distribution πγ,ν ,
given by (Pγ,ν− I)h = −f +πγ,νf . The function hγ is a solution when ν = π and πhγ = 0. hx

∗

γ is a solution

when ν = δx∗ and hx
∗

γ (x∗) = 0.

4.1 Estimation based on hγ

For estimation based on hγ , we have the following quantification of its accuracy and efficiency:

Theorem 2. Suppose Assumption 1 holds and f is Lipschitz continuous. Assume for any x ∈ X and
γ ∈ [0, 1], W (δx, π), πγ,δxVP , πγ,δxD(δzP, δx) <∞ Then, the bias of the discounted estimator satisfies

∣∣hγ(x)− h̄(x)
∣∣ ≤ C‖f‖Lip κ(1− γ)

(1− κ)(1− γκ)
W (δx, π).

The asymptotic variance satisfies

Ex[τγ ]varx

(
τγ−1∑
k=0

[f(Xk)− πf ]

)
≤2C3‖f‖2Lip

M(δx, P )

(1− γ)2(1− γκ)2

+ 2C2 1

(1− γκ)3
‖f‖2LipW (δx, π)2.

We make several remarks about the bounds in Theorem 2. First, the bounds for the bias and the variance
have similar dependence on κ and γ as those developed in Lemmas 7 and 8 in [Dai and Gluzman, 2021]. The
key difference is that for the variance bound, we do not require f2 to be strongly dominated by a Lyapunov
function V . We only require f to be Lipschitz and πγ,δx(VP ) to be bounded. Moreover, we are able to
characterize the the dependence of the bias and the variance on κ more explicitly. These differences are due
to a different analysis framework we use. Second, there is again an efficiency-accuracy tradeoff. The bias
decreases while the variance increases as γ increases. Lastly, let ηγ(f) denote the asymptotic variance of the
discounted estimator. Then,

|hγ(x)− h̄(x)| = O

(
1− γ

(1− κ)(1− γκ)

)
and ηγ(f)(x) = O

(
1

(1− γ)2(1− γκ)2

)
.

Let MSEp(γ)(x) = |hγ(x)−h̄(x)|2+ηγ(f)(x)/n be the MSE of the sample-average estimator based on hγ .
Utilizing the upper bounds for the bias and variance developed in in Theorem 2, we consider the following
approximated MSE,

M̂SEp(γ) := W (δx, π)2
(

(1− γ)

(1− κ)(1− γκ)

)2

+
M(δx, P )

n(1− γ)2(1− γκ)2
+
W (δx, π)2

(1− γκ)3
.

9



Let γ∗ be the minimizer of M̂SEp(γ). Then, as n grows large

1

1− γ∗
∼
(

W (δx, π)2

M(δx, P )(1− κ)2

)1/4

n1/4.

Based on M̂SEp(γ
∗), we also obtain an upper bound on the optimal MSE.

min
γ

MSEp(γ) = O

(
W (δx, π)

√
M(δx, P )

n1/2(1− κ)3

)
.

From the analysis above, we note that for Poisson equation estimation based on hγ , γ controls the bias,
the variance, and the effective sample size. To minimize the MSE, we want to balance (1− γ) (the bias) and
(1− γ)−2n−1 (the variance). This leads to Eτγ∗ = n1/4 and a convergence rate of n−1/2 for the MSE, which
is slower than the canonical Monte Carlo rate.

4.2 Estimation based on hx
∗
γ

The solution hx
∗

γ (x) uses the regeneration times τ ∧ τγ , which provides a better control over the regeneration
time than using τ or τγ alone. However, this introduces greater dependence on the state x. Through an
analysis of the regeneration times, we argue that for the optimal discount factor, (1− γ∗)−1 should scale at
least as fast as Ex[τ ] as x grows large.

Consider a bounded 1-Lipschitz function f ∈ Lip(X , d) with supx∈X |f(x)| ≤ α ∈ (0,∞). We have the
following bounds for the bias and asymptotic variance:∣∣∣hx∗γ (x)− hx

∗
(x)
∣∣∣2 ≤ ( α

1− κ
Ex[τ ∧ τγ ](1− γ) + α|Ex[τ ]− Ex[τ ∧ τγ ]|

)2

,

Ex[τ ∧ τγ ]varx

(
τ∧τγ−1∑
t=0

f(Xt)− πγ,δx∗ f

)
≤ 4α2Ex[τ ∧ τγ ]Ex[(τ ∧ τγ)2].

The next proposition characterizes the moments of τ ∧ τγ .

Proposition 3. Let τ ≥ 1 be a random variable with a finite moment generating function in a neighborhood
of the origin. For τγ independent of τ , we have:

Ex[τ ∧ τγ ] =
1− Ex[γτ ]

1− γ
, Ex[(τ ∧ τγ)2] =

(1 + γ)(1− Ex[γτ ])

(1− γ)2
− 2

Ex[τγτ ]

1− γ
,

and Ex[eλ(τ∧τγ)] =

{
eλ−1
γeλ−1

(
Ex
[
e(λ+log γ)τ

]
− 1
)

+ 1 if λ 6= − log γ
1−γ
γ Ex[τ ] + 1 if λ = − log γ.

We note from Proposition 3 that since τ has a finite moment generating function in a neighborhood of
the origin, i.e., Ex[eλτ ] < ∞ for some λ > 0, Ex[eλ(τ∧τγ)] < ∞ for some λ > − log(γ). This suggests that
τ ∧ τγ can have a lighter tail than τ or τγ . To gain more insights into the tail behavior, define the Orlicz
norm of a random variable X as

‖X‖o := inf

{
c > 0 : exp

(
|X|
c

)
≤ 2

}
.

The Orlicz norm provides a standardized way to compare the tail behavior of random variables through the
Chernoff bound. For the discounted estimator, we have

P

(∣∣∣∣∣
τ∧τγ−1∑
t=0

f(Xt)− πγf

∣∣∣∣∣ > t

)
≤ P (2α(τ ∧ τγ) > t) ≤ 2e

− t
2α||τ∧τγ ||o .
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If we set E[τγ ] = Ex[τ ], γ = 1− 1/Ex[τ ]. For λ = − log γ, from Proposition 3, we have

Ex[eλ(τ∧τγ)] =
2Ex[τ ]− 1

Ex[τ ]− 1
< 2.

This indicates that ‖τ ∧ τγ‖o < −1/ log γ. Thus, Px(τ ∧ τγ > t) = o(γt). Figure 1 compares the Orlicz norm
of τ , τγ and τ ∧ τγ when we assume τ has some specific distributions. We note that when E[τγ ] ≈ Ex[τ ],
‖τ ∧ τγ‖o can be much smaller than ‖τ‖o ∧ ‖τγ‖o. To balance the efficiency-accuracy tradeoff, we suggest
setting (1− γ∗(x))−1 at least as large as Ex[τ ]. And the value of γ∗(x) should depend on x through Ex[τ ].

Figure 1: Comparison of ‖τ ∧ τγ‖o (green) to ‖τ‖o (blue) and ‖τγ‖o (orange) when τ ∼ Geometric(1− 0.95) (left)
and τ ∼Poisson(10) (right) for different values of γ

5 Conclusion

In this paper, we apply the Wasserstein ergodicty framework to quantify the accuracy-efficiency tradeoff
when using discouting in Markov chain estimation. We study two estimation tasks: steady-state estimation
and estimating the solution to the Poisson equation. Let γ∗ denote the optimal discount factor. In steady-
state estimation, we show that (1− γ∗)−1 ∼ n and discounting does not improve how the MSE scales with
n and κ (the ergodicity constant). In Poisson equation estimation, discounting can help control the tail
behavior of the regeneration time. In our numerical experiments, we see large efficiency gains when applying
proper discounting schemes.

References

Søren Asmussen. Applied probability and queues. Springer Science & Business Media, 2008. B.1, C

Søren Asmussen and Peter W Glynn. Stochastic simulation: algorithms and analysis, volume 57. Springer
Science & Business Media, 2007. 1, 1.1

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial
Intelligence Research, 15(1):319–350, 2001. 1.1

David Blackwell. Discrete dynamic programming. The Annals of Mathematical Statistics, pages 719–726,
1962. 1.1

Jose Blanchet and Henry Lam. State-dependent importance sampling for rare-event simulation: An overview
and recent advances. Surveys in Operations Research and Management Science, 17(1):38–59, 2012. 1.1

A. Di Crescenzo, V. Giorno, A.G. Nobile, and L.M. Ricciardi. On the m/m/1 queue with catastrophes and
its continuous approximation. Queuing Systems, 43:329–347, 2003. C

Jim G Dai and Mark Gluzman. Queueing network controls via deep reinforcement learning. Stochastic
Systems, 2021. 1.1, 4, 4.1

11



Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. Log-concave sampling: Metropolis-hastings
algorithms are fast. Journal of Machine Learning Research, 20(183):1–42, 2019. URL http://jmlr.org/

papers/v20/19-306.html. 1.1

Peter W Glynn and Donald L Iglehart. Conditions for the applicability of the regenerative method. Man-
agement Science, 39(9):1108–1111, 1993. 1.1

Peter W. Glynn and Dirk Ormoneit. Hoeffding’s inequality for uniformly recurrent markov chains. Statistics
and Probability Letters, 56:143–146, 2002. B.1

Peter W Glynn and Ward Whitt. The asymptotic efficiency of simulation estimators. Operations research,
40(3):505–520, 1992. 4

Martin Hairer, Andrew M Stuart, and Sebastian J Vollmer. Spectral gaps for a Metropolis–Hastings algo-
rithm in infinite dimensions. The Annals of Applied Probability, 24(6):2455–2490, 2014. 1.1, 2.2

Shane G Henderson and Peter W Glynn. Approximating martingales for variance reduction in markov
process simulation. Mathematics of Operations Research, 27(2):253–271, 2002. 1.1
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A Numerical Experiments

A.1 Steady-state estimation

In section, we numerically investigate the effect of discounting on the bias and variance of the sample average
approximation. We consider the Markov chains in Examples 2.1 – 2.3:

• AR(1): f(x) = |x| and ν = δ0.

• Binomial Chain: f(x) = |x| and ν = δdaNe.

• M/M/1 queue: f(x) = x and ν = δ0.

A.1.1 Bias and Variance Quantification

We first demonstrate that the upper bounds for the bias and the asymptotic variance are tight in terms of its
dependence on the discount rate. Since the constants in our bounds can be off, we consider the normalized
bias b(γ) ≡ |πf − πγf |/|πf − νf | and variance v(γ) ≡ σ2

γ(f)/σ2(f). Under such normalization, the bounds
derived from Theorem 1 give

b(γ) = O(
1− γ

1− γκ
) and v(γ) = O

((
1− κ

1− γκ

)2
)
.

Figure 2 compares the normalized bias and variance from simulations of the discounted estimator with the
bounds derived from Theorem 1. We observe that these bounds accurately capture the dependence of the
bias and the variance on γ.

A.1.2 Optimal Discount Factor for Steady-State Estimation

We next calculate the MSE (using simulation) for a grid of discount factors. Figure 3 compares the heuristic
discount factor

γ̂∗ = 1− 4

n

varπ(f)

|πf − νf |2
,
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Figure 2: Bias and asymptotic variance comparison
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(denoted by the black line in Figure 3) with the optimal discount factor γ∗ through grid search. We observe
that the heuristic is able to accurately locate the optimal discount factor. In Table 1, we also present the
reduction and percentage reduction in the mean squared error at the optimal discount factor γ∗ compared
to the non-discounted case (γ = 1), i.e., ∆MSE and %∆MSE respectively. As our analysis has suggested,
discounting does not change how the MSE scales with the ergodicity of the Markov chain, but it still can
result in constant-order reduction in MSE.

A.2 Poisson equation estimation

A.2.1 Estimation based on hγ

In this section, we run simulation to investigate the scaling of the optimal discount factor and the corre-
sponding MSE on the sampling budget n as n→∞ for Poisson solution estimation. We again consider the
Markov chains in Examples 2.1 – 2.3 with f(x) = x. We perform stochastic bisection search to find the
discount factor that minimizes the MSE given a particular Markov chain for a range of sample sizes. We then
compute − log(1 − γ∗) and log MSE(γ∗) and regress them against log n. Our prediction for the coefficients
for log n is 1/4 and −1/2 respectively.

Figure 4 plots − log(1− γ∗) and log MSE(γ∗) against log n (The red line is the predicted line with slope
1/4 and −1/2 respectively; the green line is the best fitted regression line). We observe that the predicted
coefficients are close to the fitted coefficient.

A.2.2 Estimation based on hx
∗

γ

In this section, we run simulation to study the efficiency gain from discounting. We consider the discounted
estimator h0γ , i.e., x∗ = 0. We use a grid search to find the optimal discount factor γ∗. Table 2 compares the
value of MSE(γ) and MSE(1) (the MSE of the estimator without discounting) for an M/M/1 queue with
traffic intensities (which leads to different ergodicity constants) and different values of x. We observe that
proper discounting can achieve order of magnitude performance improvements. In addition, the optimal
discount factor increases as x increases.
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Figure 3: MSE of the discounted estimator of πf
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B Proofs of the technical results

B.1 Proof of Proposition 1

Proof. By construction of the discounted Markov chain, for any set A with ν(A) > ε, we have

inf
x∈X

P (x,A) ≥ (1− γ)ν(A) > (1− γ)ε

Thus, the Markov chain is uniformly ergodic (Theorem 16.0.2 in Meyn and Tweedie [1993]).

As a result of uniform ergodicity, the discounted Markov chain is positive Harris and satisfies a Law of
Large Numbers along with a Central Limit Theorem (Theorem 17.0.1 in Meyn and Tweedie [1993]),

√
n

(
1

n

n−1∑
t=0

f(Xt)− πγ,νf

)
⇒ N(0, σ2

γ,ν(f))as n→∞.

By the Central Limit Theorem for regenerative processes (Theorem 6.3.2 in Asmussen [2008]), the asymp-
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Table 1: Comparison of γ̂ with optimal discount factor γ∗

AR(1)

φ 0.99 0.99 0.99 0.99 0.999 0.999 0.999 0.999
σ 1 1 1 1 1 1 1 1
n 500 1000 2000 5000 3000 5000 7000 10000

γ∗ 0.996 0.997 0.9991 0.9994 0.9994 0.9996 0.9998 0.9997
γ̂ 0.995 0.998 0.999 0.9995 0.9992 0.9995 0.9997 0.9998

∆MSE −0.5 −0.2 −0.0 −0.0 −11.0 −5.2 −3.1 −1.5
%∆MSE −17% −10% −6 −3% −23% −17% −14% −9%

Binomial Chain

N 100 100 100 100 1000 1000 1000 1000
a 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n 500 1000 2000 5000 3000 5000 7000 10000

γ∗ 0.996 0.998 0.9996 0.9995 0.9993 0.9996 0.9997 0.9998
γ̂ 0.995 0.998 0.999 0.9995 0.9992 0.9995 0.9997 0.9998

∆MSE −1.5 −0.8 −0.2 −0.2 −5.2 −2.4 −1.4 −0.8
%∆MSE −15% −9% −5% −3% −22% −16% −12% −11%

M/M/1

λ 0.45 0.45 0.45 0.45 0.49 0.49 0.49 0.49
n 500 1000 2000 5000 3000 5000 7000 10000

γ∗ 0.991 0.994 0.997 0.998 0.9991 0.9994 0.9994 0.9995
γ̂ 0.990 0.995 0.998 0.999 0.999 0.9991 0.9994 0.9996

∆MSE −4.00 −1.97 −0.81 −0.16 −239.8 −191.4 −156.6 −121.0
%∆MSE −53% −45% −35% −17% −60% −59% −57% −55%

totic variance σ2
γ,ν(f) can be expressed as,

σ2
γ,ν(f) =

1

E[τγ ]

varν

(
τγ−1∑
k=0

f(Xk)

)
+

Eν
[∑τγ−1

k=0 f(Xk)
]2

E[τγ ]2
var(τγ)

−2
Eν
[∑τγ−1

k=0 f(Xk)
]

E[τγ ]
Covν(τγ ,

τγ−1∑
k=0

f(Xk))

 .
We next note that

Covν

(
τγ ,

τγ−1∑
k=0

f(Xk)

)
= Eν

[
τγ

τγ−1∑
k=0

f(Xk))

]
− E[τγ ]Eν

[
τγ−1∑
k=0

f(Xk))

]
.
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Table 2: Comparison of MSE for the discounted and standard Poisson solution estimators for the M/M/1 queue

λ x n γ∗ MSE(γ∗) MSE(1)
0.4 1 100 0.8 2.88± 0.26 20.18± 0.88
0.4 1 500 0.95 1.26± 0.08 4.69± 0.29
0.45 1 100 0.85 18.09± 2.96 595.85± 45.64
0.45 1 500 0.85 14.49± 1.33 120.76± 7.48
0.49 1 100 0.9 10, 152± 2, 819 1, 589, 682± 214, 295
0.49 1 500 0.99 1, 966± 456 269, 053± 15, 662
0.495 1 100 0.9 338, 292± 83, 284 41, 170, 786± 7, 740, 090
0.496 1 500 0.95 86, 426± 24, 454 10, 868, 799± 1, 082, 131

λ x n γ∗ MSE(γ∗) MSE(1)
0.4 3 100 0.99 70.67± 1.72 91.22± 3.72
0.4 3 500 0.9999 18.41± 0.61 19.39± 0.59
0.45 3 100 0.99 682.35± 30 2, 402± 161
0.45 3 500 0.999 357.03± 12 421.21± 18
0.49 3 100 0.99 64, 075± 22, 312 3, 927, 396± 425, 485
0.49 3 500 0.999 59, 433± 4, 797 955, 687± 50, 221
0.495 3 100 0.99 474, 387± 149, 954 108, 732, 453± 10, 901, 321
0.495 3 500 0.999 322, 360± 62, 828 28, 844, 200± 1, 679, 721

Since

Eν

[
τγ

τγ−1∑
k=0

f(Xk))

]
=

∞∑
t=1

(1− γ)γt−1t

t−1∑
k=0

νP kf

=

∞∑
k=0

(1− γ)νP kf

∞∑
t=k

(t+ 1)γt by Fubini’s theorem

=
1

1− γ

∞∑
k=0

γkνP kf +

∞∑
k=0

kγkνP kf

and

E[τγ ]Eν

[
τγ−1∑
k=0

f(Xk))

]
=

1

1− γ

∞∑
t=1

(1− γ)γt−1
t−1∑
k=0

νP kf

=
1

1− γ

∞∑
k=0

(1− γ)νP kf

∞∑
t=k

γt by Fubini’s theorem

=
1

1− γ

∞∑
k=0

γkνP k(f),

Covν

(
τγ ,

τγ−1∑
k=0

f(Xk)

)
=

∞∑
k=0

kγkνP kf.
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Then,

σ2
γ,ν(f) =(1− γ)varν

(
τγ−1∑
k=0

f(Xk)

)
+ γ(1− γ)

( ∞∑
k=0

γkνP kf

)2

− 2(1− γ)2

( ∞∑
k=0

γkνP kf

)( ∞∑
k=0

kγkνP kf

)
.

Finally, the chain satisfies a concentration inequality for bounded functions. For any measurable function
f with supx∈X |f(x)| ≤ α, we have

Pν

(
1

n

n−1∑
t=0

f(Xt)− Eν

[
1

n

n−1∑
t=0

f(Xt)

]
≥ ε

)
≤ exp

(
−

(1− γ)2(nε− 2α
1−γ )2

2nα2

)

for n > 2α/(ε(1 − γ)). Since P (x,A) ≥ (1 − γ)ν(A) for all x ∈ X , the result follows from Theorem 2 in
[Glynn and Ormoneit, 2002].

B.2 Proof of Proposition 2

Proof. (1) Recall that ||f ||Lip is the Lipchitz constant of f . Then f/||f ||Lip ∈ Lip(X , d).

|Pnf(x)− Pnf(y)| ≤ ||f ||Lip sup
g∈Lip(X ,d)

|Png(x)− Png(y)|

= ||f ||LipW (δxP
n, δyP

n)
d(x, y)

d(x, y)
≤ ‖f‖LipCκnd(x, y)

(2) By the definition of Wasserstein distance,

W (µPn, νPn) = sup
f∈Lip(X ,d)

|µPnf − νPnf | = sup
f∈Lip(X ,d)

|µ(Pnf)− ν(Pnf)|

≤ ||Pnf ||LipW (µ, ν) ≤ C‖f‖LipκnW (µ, ν).

(3) Since πP = π, we have

varπ(f) = varπP (f) = πPf2 − (πPf)2

= πPf2 −
∫
X

(Pf(x))2π(dx) +

∫
X

(Pf(x))2π(dx)− (πPf)2

=

∫
X

varδxP (f)π(dx) + varπ(Pf)

=

∞∑
t=0

∫
X

varδxP (P tf)π(dx) by induction

=

∞∑
t=0

C2‖f‖2Lipκ2t
∫
X

varδxP

(
P tf

C‖f‖Lipκt

)
π(dx)

≤
∞∑
t=0

C2‖f‖2Lipκ2t
∫
X

sup
g∈Lip(X ,d)

varδxP (g)π(dx) from part (1)

= C2‖f‖2Lip
1

1− κ2
πVP .

This implies that

Vπ ≤ C2‖f‖2Lip
1

1− κ2
πVP . (6)
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Since Pnf is C||f ||Lipκn-Lipschitz,

Varπ(Pnf) =
1

2

∫
X

∫
X

(Pnf(x)− Pnf(y))2π(dx)π(dy)

≤ 1

2
C2‖f‖2Lipκ2n sup

g∈Lip(X ,d)

∫
X

∫
X

(g(x)− g(y))2π(dx)π(dy)

=
1

2
C2‖f‖2Lipκ2nVπ.

Then,

σ2(f) = varπ(f) + 2

∞∑
k=1

covπ(f, P kf)

≤ varπ(f) + 2

∞∑
k=1

varπ(f)1/2varπ(P kf)1/2

≤ 1

2
‖f‖2LipVπ + 2

∞∑
k=1

(
1

2
‖f‖2LipVπ

)1/2(
1

2
C2||f ||2Lipκ2kVπ

)1/2

≤ C||f ||2LipVπ

∞∑
k=0

κk = C‖f‖2Lip
1

1− κ
Vπ.

Plugging in the bound for Vπ in (6), we have

σ2(f) ≤ C3||f ||2Lip
(

1

1− κ

)(
1

1− κ2

)
πVP .

B.3 Proof of Lemma 1

Proof. We prove by induction that for any 1-Lipschitz function f ,

Pnγ f(x)− Pnγ f(y) = γnPnf(x)− γnPnf(y). (7)

When n = 1,

Pγf(x)− Pγf(x) = γPf(x) + (1− γ)νf − γPf(y)− (1− γ)νf = γPf(x)− γPf(y).

Suppose P kγ f(x)− P kγ f(y) = γkP kf(x)− γkP kf(y) for k ≥ 1. Then,

P k+1
γ f(x)− P k+1

γ f(y) = γP kγ (Pf)(x) + (1− γ)νf − γP kγ (Pf)(y)− (1− γ)νf

= γk+1P k(Pf)(x)− γk+1P k(Pf)(y) = γk+1P k+1f(x)− γk+1P k+1f(y)

Thus, we have proved (7).

Next, note that

W (δxP
n
γ , δyP

n
γ ) = sup

f∈Lip(X ,d)
|Pnγ f(x)− Pnγ f(y)|

= sup
f∈Lip(X ,d)

|γnPnf(x)− γnPnf(y)|

= γn sup
f∈Lip(X ,d)

|Pnf(x)− Pnf(y)| = γnW (δxP
n, δyP

n).
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B.4 Proof of Theorem 1

Proof. We first bound the bias

|πγf − πf | =

∣∣∣∣∣(1− γ)

∞∑
t=0

γtνP tf − (1− γ)

∞∑
t=0

γtπP tf

∣∣∣∣∣
= (1− γ)

∞∑
t=0

γt
∣∣νP tf − πP tf ∣∣

≤ (1− γ)

∞∑
t=0

γtC‖f‖LipκtW (ν, π) by Lemma 1

≤ C‖f‖Lip
1− γ

1− γκ
W (ν, π).

For the variance, from Proposition 2, we have

σ2
γ(f) ≤ C‖f‖2Lip

(
1

1− γκ

)
Vπγ ≤ C3‖f‖2Lip

(
1

1− γκ

)(
1

1− (γκ)2

)
πγVPγ ,

where recall that Vπγ = supf∈Lip(X ,d) varπγ (f) and VPγ (x) = supf∈Lip(X ,d) varδxPγ (f).

We next establish bound for VPγ (x). First, by the law of total variance we have

varδxPγ (f) = γvarδxP (f) + (1− γ)varν(f) + [γ(Pf(x))2 + (1− γ)(νf)2 − (γPf(x) + (1− γ)νf)2]

Then,

VPγ (x) = sup
f∈Lip(X ,d)

varδxPγ (f) ≤ γVP (x) + (1− γ)Vν +Dγ(δxP, ν).

and we obtain
πγVPγ = γπγVP + (1− γ)Vν + πγ(Dγ(δxP, ν)).

B.5 Proof of Lemma 2

Proof. The Poisson equation for the discounted Markov chain can be written as

f(x)− πγ,νf + γPh(x) + (1− γ)νh− h(x) = 0. (8)
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Note that hγ(x) is defined independent of the initial distribution ν. We take ν = π, in which case πγ,ν = π.
Note that

hγ(x) = Ex

[
τγ−1∑
t=0

(f(Xt)− πf)

]

=

∞∑
t=1

t−1∑
k=0

(δxP
kf − πf)(1− γ)γt−1

=

∞∑
k=0

∞∑
t=k

(1− γ)γt(δxP
k − πf) by Fubini’s theorem

=

∞∑
k=0

γk(δxP
k − πf) =

∞∑
k=0

γkδxP
kf − 1

1− γ
πf.

Then,

πhγ = π

( ∞∑
k=0

γk(δxP
k − πf)

)
=

∞∑
k=0

γk(πf − πf)) = 0.

Moreover,
γPhγ(x)− hγ(x) = −f(x) + πf.

Thus, hγ is the solution to (8).

For hx
∗

γ , let ν = δx∗ . Note that τ ∧ τγ is a regeneration time for Pγ with regeneration state x∗.

hx
∗

γ = Ex

[
τ∧τγ−1∑
t=0

(f(Xt)− πγ,δx∗ f)

]

= f(x)− πγ,δx∗ + Ex

[
EX1

[
τ∧τγ−1∑
t=1

(f(Xt)− πγ,δx∗ f)

]]
= f(x)− πγ,δx∗ + Pγh

x∗

γ

which implies that hx
∗

γ is the solution to (8).

B.6 Proof of Theorem 2

Proof. From the proof of Lemma 2, we have the following bound for the bias:

∣∣hγ(x)− h̄(x)
∣∣ =

∣∣∣∣∣
∞∑
t=0

γt(δxP
t − π)f −

∞∑
t=0

(δxP
t − π)f

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
t=0

(γt − 1)((δxP
t)f − πf)

∣∣∣∣∣
≤
∞∑
t=0

(1− γt)‖f‖LipCκtW (δx, π) = C‖f‖Lip
κ(1− γ)

(1− κ)(1− γκ)
W (δx, π).

Next, we develop a bound for Varx

(∑τγ−1
k=0 (f(Xk)− πf)

)
. Consider a discounted chain with initial
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distribution δx, i.e., P γ,δx . By Proposition 1, we have

σ2
γ,δx(f − πf) =(1− γ)varx

(
τγ−1∑
k=0

(f(Xk)− πf)

)
+ γ(1− γ)

( ∞∑
k=0

γkδxP
k(f − πf)

)2

− 2(1− γ)2

( ∞∑
k=0

γkδxP
k(f − πf)

)( ∞∑
k=0

kγkδxP
k(f − πf)

)
.

By rearrange the equation above, we have

varx

(
τγ−1∑
k=0

(f(Xk)− πf)

)
=

1

1− γ
σ2
γ,δx(f − πf)− γ

( ∞∑
k=0

γkδxP
k(f − πf)

)2

+ 2(1− γ)

( ∞∑
k=0

γkδxP
k(f − πf)

)( ∞∑
k=0

kγkδxP
k(f − πf)

)

≤ 1

1− γ
σ2
γ,δx(f − πf)︸ ︷︷ ︸
(A)

+ 2(1− γ)

( ∞∑
k=0

γkδxP
k(f − πf)

)( ∞∑
k=0

kγkδxP
k(f − πf)

)
︸ ︷︷ ︸

(B)

We next develop bounds for (A) and (B) respectively. For (A), from Theorem 1, we have

1

1− γ
σ2
γ,δx(f − πf) ≤C3‖f‖2Lip

1

1− γκ
1

1− (γκ)2
1

1− γ
× (γπγ,δxVP + (1− γ)Vν + πγ,δx(Dγ(δxP, ν))) .

For (B), we first note that∣∣∣∣∣
∞∑
k=0

kγk
(
δxP

k − π
)
f

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

kγk
(
(δxP

k − π)f
)∣∣∣∣∣

≤
∞∑
k=0

kγkCκk‖f‖LipW (δx, π) = C
γκ

(1− γκ)2
‖f‖LipW (δx, π).

Similarly, ∣∣∣∣∣
∞∑
k=0

γk
(
δxP

k − π
)
f

∣∣∣∣∣ ≤
∞∑
k=0

γkCκk‖f‖LipW (δx, π) = C
1

1− γκ
‖f‖Lip (W (δx, π)) .

Then, ∣∣∣∣∣2(1− γ)

( ∞∑
k=0

γkδxP
k(f − πf)

)( ∞∑
k=0

kγkδxP
k(f − πf)

)∣∣∣∣∣
≤2C2 (1− γ)

(1− γκ)3
‖f‖2Lip (W (δx, π))

2
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Putting the bounds for (A) and (B) together, we have

Varx

(
τγ−1∑
k=0

[f(Xk)− πγf ]

)

≤2C3‖f‖2Lip
1

(1− γ)(1− γκ)2
(γπγ,δxVP + (1− γ)Vν + πγ,δx(Dγ(δxP, ν)))

+ 2C2 (1− γ)

(1− γκ)3
‖f‖2Lip (W (δx, π))

2
.

B.7 Proof of Proposition 3

Proof. We first note that

Ex[τ ∧ τγ ] =

∞∑
t=1

Px(τ ∧ τγ ≥ t)

=

∞∑
t=1

γt−1
∞∑
k=t

Px(τ = k) as τ and τγ are independent

=

∞∑
k=1

(
k−1∑
t=0

γt

)
Px(τ = k) by Fubini’s theorem

=

∞∑
t=1

1− γk

1− γ
Px(τ = k) =

1− Ex[γτ ]

1− γ

We next establish the expression for the moment generating function. Note that both the mean and the
second moment can be derived by taking the (first and second) derivative of the moment generating function
and evaluate the corresponding derivatives at λ = 0. First, note that

∞∑
t=1

eλtPx(τ ∧ τγ ≥ t) =

∞∑
k=1

(
k∑
t=0

eλt

)
Px(τ ∧ τγ = k)

=

∞∑
k=1

eλ(eλk − 1)

eλ − 1
Px(τ ∧ τγ = k)

=
eλ

eλ − 1

(
Ex
[
eλ(τ∧τγ)

]
− 1
)

Thus,

Ex[eλ(τ∧τγ)] =
eλ − 1

eλ

∞∑
t=0

eλtPx(τ ∧ τγ ≥ t) + 1.

Next, note that when λ+ log γ 6= 0,

∞∑
t=1

eλtPx(τ ∧ τγ ≥ t) =

∞∑
t=1

γt−1eλtPx(τ ≥ t)

=
1

γ

∞∑
t=1

e(λ+log γ)tPx(τ ≥ t)

=
1

γ

eλ+log γ

eλ+log γ − 1

(
Ex
[
e(λ+log γ)τ

]
− 1
)
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Then,

Ex[eλ(τ∧τγ)] =
eλ − 1

γeλ − 1

(
Ex
[
e(λ+log γ)τ

]
− 1
)

+ 1

When λ+ log γ 6= 0,
∞∑
t=1

eλtPx(τ ∧ τγ ≥ t) =
1

γ

∞∑
t=1

Px(τ ≥ t) =
1

γ
Ex[τ ].

Then

Ex[eλ(τ∧τγ)] =
1− γ
γ

Ex[τ ] + 1.

Lastly, for second moment we have:

Ex[(τ ∧ τγ)2] =
∂2

∂λ2
Ex[eλ(τ∧τγ)]

∣∣∣
λ=0

=
(1− E[γτ ])(1 + γ)

(1− γ)2
− 2

Ex[τγτ ]

1− γ

C Discounting for the M/M/1 queue

In this section, we describe the stationary distribution, the solution to the Poisson equation, and the asymp-
totic variance of the discounted Markov chain Pγ for the M/M/1 queue with f(x) = x and ν = δ0. Note
that the transient and steady-state distribution of the chain have been fully derived in [Kumar and Arivu-
dainambi, 2000] and [Crescenzo et al., 2003]. However, to the best of our knowledge, the expression for the
asymptotic variance is new. For completeness, we include derivations of all the results mentioned.

First, we can characterize the steady-state distribution and moments of the discounted chain. As it turns
out, the stationary distribution of the discounted chain remains a geometric distribution with an altered
rate. Note here, we normalize λ+ µ = 1.

Proposition 4. Let πγ be the stationary distribution of Pγ , and let ηγ and Vπγ be the steady state mean
and variance:

πγ(n) =
2(1− γ)

1− 2γµ+
√

1− 4γ2λµ

(
1−

√
1− 4γ2λµ

2γµ

)n

ηγ =
−1 + 2γλ+

√
1− 4γ2λµ

2(1− γ)

Vπγ =
γ
(

1− (µ− λ)
√

1− 4γ2λµ− 4γλµ
)

2(1− γ)2

Consider the Poisson equation for the discounted Markov chain:

(Pγ − I)hγ = −x+ ηγ

We can directly solve for hγ , and in this case we compute the solution such that hγ(0) = 0. Using the solution
we can then compute the asymptotic variance of discounted estimator as σ2

γ(f) = πγ(h2γ) − πγ((Phγ)2)
[Asmussen, 2008, Theorem 1.7.2]

Proposition 5. The solution to the Poisson equation and the asymptotic variance of the discounted Markov
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chain are:

hγ(x) =
x

1− γ
+

(
−1 + 2γµ+

√
1− 4γ2λµ

2(1− γ)2

)(
1−

√
1− 4γ2λµ

2γλ

)x

−

(
−1 + 2γµ+

√
1− 4γ2λµ

2(1− γ)2

)
,

σ2
γ =

32γ2µ2(√
1− 4γ2λµ− 2γµ+ 1

)(√
1− 4γ2λµ+ 2γµ− 1

)3 (
1− 4γ2λµ−

√
1− 4γ2λµ

)2
×
[
−4γ5λ2µ2

(√
1− 4γ2λµ− 2µ− 2

)
−
√

1− 4γ2λµ+ 1

+ γ3λµ
(

2µ
(

3
√

1− 4γ2λµ− 5
)

+
√

1− 4γ2λµ+ 1
)

+γ2λµ
(√

1− 4γ2λµ− 3
)
− γ(µ− λ)

(√
1− 4γ2λµ− 1

)]
.

We can then solve for the discount factor that minimizes MSE(γ) = |η − ηγ |2 + σ2
γ/n. There is no

explicit closed-form solution for the optimal discount factor, so we use a numerical solver. Figure 5 plots
n−1(1−γ∗)−1 for the optimal discount factor as n grows large. We can observe that this converges as n grows
large and that the limit is similar across queues with different traffic intensities. This confirms the 1

1−γ∗ ∼ n
scaling that was predicted for the optimal discount factor. This also confirms the fact that asymptotically,
the ergodicity of the chain has a small effect on the optimal discount factor.

C.1 Proof of Proposition 4

We can verify that the probability mass function πγ(n) satisfies the steady-state equations:

πγ(n) =
2(1− γ)

1− 2γµ+
√

1− 4γ2λµ

(
1−

√
1− 4γ2λµ

2γµ

)n

First, we can observe that for any n > 0:

γλπγ(n− 1) + γµπγ(n+ 1)

=
2(1− γ)

1− 2γµ+
√

1− 4γ2λµ

γλ(1−
√

1− 4γ2λµ

2γµ

)n−1
+ γµ

(
1−

√
1− 4γ2λµ

2γµ

)n+1


=
2(1− γ)

1− 2γµ+
√

1− 4γ2λµ

(
1−

√
1− 4γ2λµ

2γµ

)(
2γ2λµ

1−
√

1− 4γ2λµ
+

1−
√

1− 4γ2λµ

2

)

=
2(1− γ)

1− 2γµ+
√

1− 4γ2λµ

(
1−

√
1− 4γ2λµ

2γµ

)(
4γ2λµ+ (1−

√
1− 4γ2λµ)2

2(1−
√

1− 4γ2λµ)

)

=
2(1− γ)

1− 2γµ+
√

1− 4γ2λµ

(
1−

√
1− 4γ2λµ

2γµ

)
= πγ(n)

For πγ(0) we have:
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γµ(πγ(1) + πγ(0)) + (1− γ)

=γµ

(
2(1− γ)

1− 2γµ+
√

1− 4γ2λµ

)(
1 +

1−
√

1− 4γ2λµ

2γµ

)
+ (1− γ)

= γµ

(
2(1− γ)

1− 2γµ+
√

1− 4γ2λµ

)(
1 + 2γµ−

√
1− 4γ2λµ

2γµ

)

+
2γµ(1− γ)(1− 2γµ+

√
1− 4γ2λµ)

2γµ(1− 2γµ+
√

1− 4γ2λµ)

=
(1− γ)(1 + 2γµ−

√
1− 4γ2λµ)

(1− 2γµ+
√

1− 4γ2λµ)
+

(1− γ)(1− 2γµ+
√

1− 4γ2λµ)

(1− 2γµ+
√

1− 4γ2λµ)

=
2(1− γ)

(1− 2γµ+
√

1− 4γ2λµ)
= πγ(0).

Thus πγ(n) solves the stationary equations and is a Geometric distribution with the observation that
since λ+ µ = 1,

1− 1−
√

1− 4γ2λµ

2γµ
=

2γµ− 1 +
√

1− 4γ2λµ

2γµ
=

2(1− γ)

(1− 2γµ+
√

1− 4γ2λµ)
.

The stationary mean and variance arrive as a result of the mean and variance for Geometric random
variables:

ηγ =

1−
√

1−4γ2λµ

2γµ

1− 1−
√

1−4γ2λµ

2γµ

=
−1 + 2γλ+

√
1− 4γ2λµ

2(1− γ)
,

Vπγ =

1−
√

1−4γ2λµ

2γµ

(1− 1−
√

1−4γ2λµ

2γµ )2
=
γ
(

1− (µ− λ)
√

1− 4γ2λµ− 4γλµ
)

2(1− γ)2
.

C.2 Proof of Proposition 5

The Poisson equation is (Pγ − I)hγ = −f + ηγ or more explicitly:

γ(µhγ(x− 1) + λhγ(x+ 1)) + (1− γ)hγ(0)− hγ(x) = −x+ ηγ

γ(µhγ(0) + λhγ(1)) + (1− γ)hγ(0)− hγ(0) = −x+ ηγ

We can verify that the following function solves the Poisson equation:

hγ(x) =
x

1− γ
+

(
−1 + 2γµ+

√
1− 4γ2λµ

2(1− γ)2

)(
1−

√
1− 4γ2λµ

2γλ

)x

−

(
−1 + 2γµ+

√
1− 4γ2λµ

2(1− γ)2

)
.
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First, we can see that hγ(0) = 0 so:

γλhγ(1) =γλ

[
1

1− γ
−

(
−1 + 2γµ+

√
1− 4γ2λµ

2(1− γ)2

)

+

(
−1 + 2γµ+

√
1− 4γ2λµ

2(1− γ)2

)(
1−

√
1− 4γ2λµ

2γλ

)]

=γλ
1

1− γ
+ γλ

2λγ − 4γ2λµ− 2γλ
√

1− 4γ2λµ

4γλ(1− γ)2

+ γλ
(−1 + 2γµ+ 2

√
1− 4γ2λµ− 2γµ

√
1− 4γ2λµ− (1− 4γ2λµ)

4γλ(1− γ)2

=γλ

(
1

1− γ
+
−2 + 2γ(µ+ λ) + (2− 2γλ− 2γµ)

√
1− 4γ2λµ

4γλ(1− γ)2

)

=γλ

(
4γλ(1− γ)− 2(1− γ) + 2(1− γ)

√
1− 4γ2λµ

4γλ(1− γ)2

)

=

(
−1 + 2γλ+

√
1− 4γ2λµ

2γλ(1− γ)2

)
.

Furthermore,

γµhγ(x− 1) + γλhγ(x+ 1)− hγ(x)

=− x+ γ
λ− µ
1− γ

+ (1− γ)

(
−1 + 2γµ+

√
1− 4γ2λµ

2(1− γ)2

)

+ γ

(
−1 + 2γµ+

√
1− 4γ2λµ

2(1− γ)2

)(
1−

√
1− 4γ2λµ

2γλ

)x

×

µ(1−
√

1− 4γ2λµ

2γλ

)−1
+ λ

(
1−

√
1− 4γ2λµ

2γλ

)
− 1

γ


=− x− γ µ− λ

1− γ
+ (1− γ)

(
−1 + 2γµ+

√
1− 4γ2λµ

2(1− γ)2

)

=− x+

(
−1 + 2γλ+

√
1− 4γ2λµ

2(1− γ)2

)

Since:
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µ

(
2γλ

1−
√

1− 4γ2λµ

)
+ λ

(
1−

√
1− 4γ2λµ

2γλ

)
− 1

γ

=
γµ(4γ2λ2) + γλ(1−

√
1− 4γ2λµ)2 − 2γλ(1−

√
1− 4γ2λµ)

2γλ(1−
√

1− 4γ2λµ)

=
4γ3λ2µ+ γλ− 2γλ

√
1− 4γ2λµ+ γλ(1− 4γ2λµ)− 2γλ+ 2γλ

√
1− 4γ2λµ

γ2γλ(1−
√

1− 4γ2λµ)
= 0

Thus hγ(x) solves the Poisson equation. Since it solves the Poisson equation, we can calculate the
asymptotic variance as:

σ2
γ(f) =πγ(h2γ)− πγ((Pγhγ)2)

=πγ(h2γ)− πγ((hγ − (x− ηγ))2)

=πγ(2hγ(x− ηγ))− πγ((x− ηγ)2)

=2πγ

(
(x− ηγ)

[
x− αγ
1− γ

+
αγ

1− γ

(
1−

√
1− 4γ2λµ

2γλ

)x])
− Vπγ

=2πγ

(
(x− ηγ)(x− αγ)

1− γ
+
αγ(x− ηγ)

1− γ

(
1−

√
1− 4γ2λµ

2γλ

)x)
− Vπγ

=
16γ2µ2

(
1−

√
1− 4γ2λµ

)
(√

1− 4γ2λµ− 2γµ+ 1
)(√

1− 4γ2λµ+ 2γµ− 1
)3

+
8γ3λµ2

(
2γ2(µ− 1)µ− γ(1− µ)

(
1−

√
1− 4γ2λµ

)
+ 1−

√
1− 4γ2λµ

)
(1− γ)

(√
1− 4γ2λµ− 2γµ+ 1

)(
4γ2λµ+

√
4g2(µ− 1)µ+ 1− 1

)2
−
γ
(

1− (µ− λ)
√

1− 4γ2λµ− 4γλµ
)

2(1− γ)2

=
32γ2µ2(√

1− 4γ2λµ− 2γµ+ 1
)(√

1− 4γ2λµ+ 2γµ− 1
)3 (

1− 4γ2λµ−
√

1− 4γ2λµ
)2

×
[
−4γ5λ2µ2

(√
1− 4γ2λµ− 2µ− 2

)
+ γ3λµ

(
2µ
(

3
√

1− 4γ2λµ− 5
)

+
√

1− 4γ2λµ+ 1
)

+γ2λµ
(√

1− 4γ2λµ− 3
)
− γ(µ− λ)

(√
1− 4γ2λµ− 1

)
−
√

1− 4γ2λµ+ 1
]
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Figure 4: log 1
1−γ∗ (left) and logMSE(γ∗) (right) with logn

AR(1) : φ = 0.9, σ = 1, x = 5

M/M/1 : λ = 0.4, x = 5

Binomial:a = 0.5, N = 10, x = 5

29



Figure 5: 1
n(1−γ∗) of the discounted estimator for the M/M/1 queue
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